Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Front Public Health ; 12: 1335560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638484

RESUMO

Objective: This study aimed to investigate the knowledge, attitude, and practice (KAP) regarding disinfection and hand hygiene, along with associated influencing factors among childcare facilities staff during the COVID-19 pandemic in Anhui, and to provide information for developing disinfection and hand hygiene strategies for childcare facilities. Methods: A web-based cross-sectional study was conducted among Anhui Province residents in China in September 2020. In this study, 60 childcare facilities in two cities of Anhui Province were selected using the convenient sampling method for questionnaires. The questionnaires were distributed through a web-based platform. The disinfection and hand hygiene KAP scores among childcare facilities staff were calculated, and their influencing factors were analyzed. The accuracy rates of knowledge, attitude, and practice of behavior were calculated and analyzed. Results: A total of 1,029 participants were included in the study. The disinfection and hand hygiene knowledge, attitude and practice ranged from approximately 5 to 23, 1 to 5, 3 to 13, respectively. The score of urban areas was higher than that of rural areas. Higher education levels and more years of working were associated with higher scores. Additionally, staff who received training or supervision had higher scores than those without. The categories with the lowest knowledge accuracy rate (46.3%), lowest attitude accuracy rate (4.2%), and "always" practice rate (5.3%) among childcare facility staff were all related to the question categories concerning the appropriate range of disinfectants for use. The accuracy rates of hand hygiene knowledge and attitude among the childcare facility staff were high (83.7%-99.6%), but the "always" practice rate was in the middle range (63.0%). Conclusion: The disinfection and hand hygiene knowledge among childcare facilities staff was inadequate during the COVID-19 pandemic in Anhui. Continuous implementation of education and training, particularly in rural areas, is essential. Establishing a monitoring system to assess usage effectiveness and adverse reactions in China is critical. Interventions should focus on increasing compliance with hand hygiene practices. Further research should explore the training and intervention of disinfection and hand hygiene, the safety of disinfection measures, and more operational hand hygiene methods in childcare facilities.


Assuntos
COVID-19 , Higiene das Mãos , Criança , Humanos , Higiene das Mãos/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Transversais , Cuidado da Criança , Desinfecção , Conhecimentos, Atitudes e Prática em Saúde , Pandemias/prevenção & controle
2.
BMC Med ; 22(1): 153, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609953

RESUMO

BACKGROUND: Prediction of lymph node metastasis (LNM) is critical for individualized management of papillary thyroid carcinoma (PTC) patients to avoid unnecessary overtreatment as well as undesired under-treatment. Artificial intelligence (AI) trained by thyroid ultrasound (US) may improve prediction performance. METHODS: From September 2017 to December 2018, patients with suspicious PTC from the first medical center of the Chinese PLA general hospital were retrospectively enrolled to pre-train the multi-scale, multi-frame, and dual-direction deep learning (MMD-DL) model. From January 2019 to July 2021, PTC patients from four different centers were prospectively enrolled to fine-tune and independently validate MMD-DL. Its diagnostic performance and auxiliary effect on radiologists were analyzed in terms of receiver operating characteristic (ROC) curves, areas under the ROC curve (AUC), accuracy, sensitivity, and specificity. RESULTS: In total, 488 PTC patients were enrolled in the pre-training cohort, and 218 PTC patients were included for model fine-tuning (n = 109), internal test (n = 39), and external validation (n = 70). Diagnostic performances of MMD-DL achieved AUCs of 0.85 (95% CI: 0.73, 0.97) and 0.81 (95% CI: 0.73, 0.89) in the test and validation cohorts, respectively, and US radiologists significantly improved their average diagnostic accuracy (57% vs. 60%, P = 0.001) and sensitivity (62% vs. 65%, P < 0.001) by using the AI model for assistance. CONCLUSIONS: The AI model using US videos can provide accurate and reproducible prediction of cervical lymph node metastasis in papillary thyroid carcinoma patients preoperatively, and it can be used as an effective assisting tool to improve diagnostic performance of US radiologists. TRIAL REGISTRATION: We registered on the Chinese Clinical Trial Registry website with the number ChiCTR1900025592.


Assuntos
Inteligência Artificial , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Metástase Linfática/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/diagnóstico por imagem
3.
J Colloid Interface Sci ; 665: 100-108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38518422

RESUMO

Construction of inorganic/organic heterostructures has been proven to be a very promising strategy to design highly efficient photocatalysts for solar driven hydrogen evolution from water. Herein, we report the preparation of a direct Z-scheme heterojunction photocatalyst by in situ growth of cadmium sulfide on a triazine-based covalent organic framework (COF). The triazine based-COF was synthesized by condensation reaction of precursors 1,3,5-tris-(4-formyl-phenyl) triazine (TFPT) and 2,5-bis-(3-hydroxypropoxy) terephthalohydrazide (DHTH), termed as TFPT-DHTH-COF. Widely distributed nitrogen atoms throughout TFPT-DHTH-COF skeletons serve as anchoring sites for strong interfacial interactions with CdS. The CdS/TFPT-DHTH-COF composite showed a hydrogen evolution rate of 15.75 mmol h-1 g-1, which is about 75 times higher than that of TFPT-DHTH-COF (0.21 mmol h-1 g-1) and 3.4 times higher than that of CdS (4.57 mmol h-1 g-1). With the properly staggered band alignment and strong interfacial interaction between TFPT-DHTH-COF and CdS, a Z-scheme charge transfer pathway is achieved. The mechanism has been systematically analyzed by steady state and time-resolved photoluminescence measurements as well as in situ irradiated X-ray photoelectron spectroscopy.

4.
ACS Nano ; 18(1): 809-818, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38108268

RESUMO

van der Waals ferroic materials exhibit rich potential for implementing future generation functional devices. Among these, layered ß'-In2Se3 has fascinated researchers with its complex superlattice and domain structures. As opposed to ferroelectric α-In2Se3, the understanding of ß'-In2Se3 ferroic properties remains unclear because ferroelectric, antiferroelectric, and ferroelastic characteristics have been separately reported in this material. To develop useful applications, it is necessary to understand the microscopic structural properties and their correlation with macroscopic device characteristics. Herein, using scanning transmission electron microscopy (STEM), we observed that the arrangement of dipoles deviates from the ideal double antiparallel antiferroelectric character due to competition between antiferroelectric and ferroelectric structural ordering. By virtue of second-harmonic generation, four-dimensional STEM, and in-plane piezoresponse force microscopy, the long-range inversion-breaking symmetry, uncompensated local polarization, and net polarization domains are unambiguously verified, revealing ß'-In2Se3 as an in-plane ferrielectric layered material. Additionally, our device study reveals analogous resistive switching behaviors of different types owing to polarization switching, defect migration, and defect-induced charge trapping/detrapping processes.

5.
J Am Chem Soc ; 145(33): 18549-18559, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37579341

RESUMO

Organic-inorganic metal hybrids with their tailorable lattice dimensionality and intrinsic spin-splitting properties are interesting material platforms for spintronic applications. While the spin decoherence process is extensively studied in lead- and tin-based hybrids, these systems generally show short spin decoherence lifetimes, and their correlation with the lattice framework is still not well-understood. Herein, we synthesized magnetic manganese hybrid single crystals of (4-fluorobenzylamine)2MnCl4, ((R)-3-fluoropyrrolidinium)MnCl3, and (pyrrolidinium)2MnCl4, which represent a change in lattice dimensionality from 2D and 1D to 0D, and studied their spin decoherence processes using continuous-wave electron spin resonance spectroscopy. All manganese hybrids exhibit nanosecond-scale spin decoherence time τ2 dominated by the symmetry-directed spin exchange interaction strengths of Mn2+-Mn2+ pairs, which is much longer than lead- and tin-based metal hybrids. In contrast to the similar temperature variation laws of τ2 in 2D and 0D structures, which first increase and gradually drop afterward, the 1D structure presents a monotonous rise of τ2 with the temperatures, indicating the strong correlation of spin decoherence with the lattice rigidity of the inorganic framework. This is also rationalized on the basis that the spin decoherence is governed by the competitive contributions from motional narrowing (prolonging the τ2) and electron-phonon coupling interaction (shortening the τ2), both of which are thermally activated, with the difference that the former is more pronounced in rigid crystalline lattices.

6.
J Am Chem Soc ; 145(25): 14044-14051, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37315326

RESUMO

Ferroelectricity in two-dimensional hybrid (2D) organic-inorganic perovskites (HOIPs) can be engineered by tuning the chemical composition of the organic or inorganic components to lower the structural symmetry and order-disorder phase change. Less efforts are made toward understanding how the direction of the polar axis is affected by the chemical structure, which directly impacts the anisotropic charge order and nonlinear optical response. To date, the reported ferroelectric 2D Dion-Jacobson (DJ) [PbI4]2- perovskites exhibit exclusively out-of-plane polarization. Here, we discover that the polar axis in ferroelectric 2D Dion-Jacobson (DJ) perovskites can be tuned from the out-of-plane (OOP) to the in-plane (IP) direction by substituting the iodide with bromide in the lead halide layer. The spatial symmetry of the nonlinear optical response in bromide and iodide DJ perovskites was probed by polarized second harmonic generation (SHG). Density functional theory calculations revealed that the switching of the polar axis, synonymous with the change in the orientation of the sum of the dipole moments (DMs) of organic cations, is caused by the conformation change of organic cations induced by halide substitution.

7.
ACS Appl Bio Mater ; 6(9): 3433-3440, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084245

RESUMO

Photothermal therapy is a promising light-based medical treatment that relies on light absorption agents converting light irradiation into localized heat to destroy cancer cells or other diseased tissues. It is critical to enhance the therapeutic effects of cancer cell ablation for their practical applications. This study reports a high-performance combinational therapy for ablating cancer cells, including both photothermal therapy and chemotherapy to improve therapeutic efficiency. The prepared AuNR@mSiO2 loading molecular Doxorubicin (Dox) assemblies were highlighted by merits of facile acquisition, great stability, easy endocytosis, and rapid drug release in addition to improved anticancer capability upon irradiation with a femtosecond pulsed near-infrared (NIR) laser, where AuNR@mSiO2 nanoparticles afforded a high photothermal conversion efficiency of 31.7%. Two-photon excitation fluorescence imaging was introduced into confocal laser scanning microscope multichannel imaging to track the drug location and cell position in real time for monitoring the process of drug delivery in killing human cervical cancer HeLa cells and then to realize imaging-guiding cancer treatment. These nanoparticles exhibit widespread potential in photoresponsive utilizations including photothermal therapy, chemotherapy, one- and two-photon excited fluorescence imaging, and 3D fluorescence imaging and cancer treatment.


Assuntos
Ouro , Nanotubos , Humanos , Células HeLa , Liberação Controlada de Fármacos , Dióxido de Silício , Fototerapia/métodos , Imagem Óptica
8.
J Am Chem Soc ; 145(6): 3569-3576, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727858

RESUMO

Hybrid organic-inorganic perovskites (HOIPs) are promising stimuli-responsive materials (SPMs) owing to their molecular softness and tailorable structural dimensionality. The design of mechanically responsive HOIPs requires an in-depth understanding of how lattice strain induces intermolecular rearrangement that impacts physical properties. While chirality transfer from an organic cation to an inorganic lattice is known to influence chiral-optical properties, its effect on strain-induced phase conversion has not been explored. As opposed to achiral or racemic organic cations, chiral organic cations can potentially afford a new dimension in strain-responsive structural change. Herein, we demonstrate that mechanical strain induces a solid phase crystal conversion in chiral halide pseudo-perovskite single crystals (R/S)-(FE)2CuCl4 (FE = (4-Fluorophenyl)ethylamine) from a 0D isolated CuCl4 tetrahedral to 1D corner-sharing CuFCl5 octahedral framework via the incorporation of Cu···F interaction and N-H···F hydrogen bonding. This strain-induced crystal-to-crystal conversion involves the connection of neighboring 0D CuCl4 tetrahedra via Cu2+-Cl--Cu2+ linkages as well as the incorporation of a F-terminated organic cation as one of the X atoms in BX6 octahedra, leading to a reduced band gap and paramagnetic-to-ferromagnetic conversion. Control experiments using nonchiral or racemic perovskite analogs show the absence of such solid phase conversion. To demonstrate pressure-sensitive properties, the 0D phase is dispersed in water-soluble poly(vinyl alcohol) (PVA) polymer, which can be applied to a large-scale pressure-induced array display on fibrous Spandex substrates via a screen-printing method.

9.
Plant Sci ; 329: 111621, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736462

RESUMO

Mitogen-activated protein kinases (MAPKs) play important roles in the stress response of plants. However, the function of MPK proteins in freeze-resistance in wheat remains unclear. Dongnongdongmai No.1 (Dn1) is a winter wheat variety with a strong freezing resistance at extremely low temperature. In this study, we demonstrated that TaMPK6 is induced by JA signaling and is involved in the modulation of Dn1 freeze resistance. Overexpression of TaMPK6 in Arabidopsis increased the survival rate of plant at -10 â„ƒ. The scavenging ability of reactive oxygen species (ROS) and the expression of cold-responsive genes CBFs and CORs were significantly enhanced in TaMPK6-overexpressed Arabidopsis, suggesting a role of TaMPK6 in activating the ICE-CBF-COR module and antioxidant enzyme system to resist freezing stress. Furthermore, TaMPK6 is localized in the nucleus and TaMPK6 interacts with TaICE41, TaCBF14, and TaMYC2 proteins, the key components in JA signaling and the ICE-CBF-COR pathway. These results suggest that JA-induced TaMPK6 may regulate freezing-resistance in wheat by interacting with the TaICE41, TaCBF14, and TaMYC2 proteins, which in turn enhances the ICE-CBF-COR pathway. Our study revealed the molecular mechanism of TaMPK6 involvement in the cold resistance pathway in winter wheat under cold stress, which provides a basis for enriching the theory of wheat cold resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Congelamento , Arabidopsis/genética , Antioxidantes/metabolismo , Temperatura Baixa , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
11.
ACS Nano ; 16(10): 15862-15872, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36169603

RESUMO

The optoelectronic properties of two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers such as WS2 are largely dominated by excitons due to strong Coulomb interactions in these 2D confined monolayers, which lead to formation of Rydberg-like excitonic states below the free quasiparticle band gap. The precise knowledge of high order Rydberg excitonic states is of great importance for both fundamental understanding such as many-electron effects and device applications such as optical switching and quantum process information. Bright excitonic states could be probed by linear optical spectroscopy, while probing dark excitonic states generally requires nonlinear optical (NLO) spectroscopy. Conventional optical methods for probing high-order Rydberg excitonic states were generally performed at cryogenic temperatures to ensure enough signal-to-noise ratio (SNR) and narrow line width. Here we have designed a hybrid nanostructure of monolayer WS2 integrated with a plasmonic cavity and investigated their NLO properties at the single particle level. Giant enhancement in NLO responses, stronger excitonic resonance effects, and narrowed line widths of NLO excitation spectra were observed when monolayer WS2 was placed in our carefully designed plasmonic cavity. Optimum enhancement of 1000-, 3000-, and 3800-fold were achieved for two-photon photoluminescence (2PPL), second harmonic generation (SHG), and third-harmonic generation (THG), respectively, in the optimized cavity structure. The line width of SHG excitation spectra was reduced from 43 down to 15 meV. Plasmon enhanced NLO responses brought improved SNR and spectral resolution, which allowed us to distinguish discrete excitonic states with small energy differences at room temperature. By using three complementary NLO techniques in combination with linear optical spectroscopy, energies of Rydberg excitonic states of A (1s, 2s, 2p, 3s, 3p, 4s), B (1s), and C and D excitons of monolayer WS2 have been accurately determined, which allow us to determine exciton binding energy and quasiparticle bandgap. It was interesting to find that the 2p lies 30 meV below 2s, which lends strong support to the theoretical prediction of nonlocal dielectric screening effects based on a non-hydrogenic model. Our results show that plasmon enhanced NLO spectroscopy could serve as a general method for probing high order Rydberg excitonic states of 2D materials.

12.
Nat Commun ; 13(1): 5465, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115861

RESUMO

The reduced symmetry in strong spin-orbit coupling materials such as transition metal ditellurides (TMDTs) gives rise to non-trivial topology, unique spin texture, and large charge-to-spin conversion efficiencies. Bilayer TMDTs are non-centrosymmetric and have unique topological properties compared to monolayer or trilayer, but a controllable way to prepare bilayer MoTe2 crystal has not been achieved to date. Herein, we achieve the layer-by-layer growth of large-area bilayer and trilayer 1T' MoTe2 single crystals and centimetre-scale films by a two-stage chemical vapor deposition process. The as-grown bilayer MoTe2 shows out-of-plane ferroelectric polarization, whereas the monolayer and trilayer crystals are non-polar. In addition, we observed large in-plane nonlinear Hall (NLH) effect for the bilayer and trilayer Td phase MoTe2 under time reversal-symmetric conditions, while these vanish for thicker layers. For a fixed input current, bilayer Td MoTe2 produces the largest second harmonic output voltage among the thicker crystals tested. Our work therefore highlights the importance of thickness-dependent Berry curvature effects in TMDTs that are underscored by the ability to grow thickness-precise layers.

13.
J Colloid Interface Sci ; 623: 799-807, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35636289

RESUMO

Micromorphology engineering and co-catalyst construction are considered as feasible approaches to boost the photocatalytic hydrogen evolution performance. Herein, we combined two approaches to construct a new photocatalyst with titanium dioxide (TiO2) hierarchical microspheres (HMSs) as support and atomically dispersed platinum (Pt) species as co-catalyst (donated as TiO2 HMSs@xPt). The as-prepared TiO2 HMSs@xPt photocatalysts exhibited combined advantages including adequate light harvesting, improved charge-carrier separation and transport, abundant active sites, and reduced Pt consumption, which are favorable for photocatalytic hydrogen evolution. Specifically, the optimized TiO2 HMSs@0.36Pt exhibits a remarkable photocatalytic hydrogen evolution rate of 11.7 mmol g-1h-1 under simulated AM 1.5G solar light irradiation, which is 50 times and 4.8 times higher than those of pure TiO2 HMSs and traditional anatase TiO2 nanoparticles (NPs) with the same Pt loading, respectively.


Assuntos
Hidrogênio , Platina , Hidrogênio/química , Microesferas , Platina/química , Titânio/química
14.
ACS Nano ; 16(5): 8172-8180, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35575066

RESUMO

In artificial van der Waals (vdW) layered devices, twisting the stacking angle has emerged as an effective strategy to regulate the electronic phases and optical properties of these systems. Along with the twist registry, the lattice reconstruction arising from vdW interlayer interaction has also inspired significant research interests. The control of twist angles is significantly important because the moiré periodicity determines the electron propagation length on the lattice and the interlayer electron-electron interactions. However, the moiré periodicity is hard to be modified after the device has been fabricated. In this work, we have demonstrated that the moiré periodicity can be precisely modulated with a localized laser annealing technique. This is achieved with regulating the interlayer lattice mismatch by the mismatched lattice constant, which originates from the variable density of sulfur vacancy generated during laser modification. The existence of sulfur vacancy is further verified by excitonic emission energy and lifetime in photoluminescence measurements. Furthermore, we also discover that the mismatched lattice constant has the equivalent contribution as the twist angle for determining the lattice mismatch. Theoretical modeling elaborates the moiré-wavelength-dependent energy variations at the interface and mimics the evolution of moiré morphology.

15.
Nat Commun ; 13(1): 794, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145089

RESUMO

The miniaturization of ferroelectric devices in non-volatile memories requires the device to maintain stable switching behavior as the thickness scales down to nanometer scale, which requires the coercive field to be sufficiently large. Recently discovered metal-free perovskites exhibit advantages such as structural tunability and solution-processability, but they are disadvantaged by a lower coercive field compared to inorganic perovskites. Herein, we demonstrate that the coercive field (110 kV/cm) in metal-free ferroelectric perovskite MDABCO-NH4-(PF6)3 (MDABCO = N-methyl-N'-diazabicyclo[2.2.2]octonium) is one order larger than MDABCO-NH4-I3 (12 kV/cm) owing to the stronger intermolecular hydrogen bonding in the former. Using isotope experiments, the ferroelectric-to-paraelectric phase transition temperature and coercive field are verified to be strongly influenced by hydrogen bonds. Our work highlights that the coercive field of organic ferroelectrics can be tailored by tuning the strength of hydrogen bonding.

16.
Angew Chem Int Ed Engl ; 61(9): e202115020, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931425

RESUMO

Despite rapid progress over the past decade, most polycondensation systems even upon a small structural variation of the building units eventually result in amorphous polymers other than the desired crystalline covalent organic frameworks. This synthetic dilemma is a central and challenging issue of the field. Here we report a novel approach based on module-patterned polymerization to enable efficient and designed synthesis of crystalline porous polymeric frameworks. This strategy features a wide applicability to allow the use of various knots of different structures, enables polycondensation with diverse linkers, and develops a diversity of novel crystalline 2D polymers and frameworks, as demonstrated by using the C=C bond-formation polycondensation reaction. The new sp2 -carbon frameworks are highly emissive and enable up-conversion luminescence, offer low band gap semiconductors with tunable band structures, and achieve ultrahigh charge mobilities close to theoretically predicted maxima.

17.
J Chem Phys ; 155(23): 234201, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34937371

RESUMO

Plasmon-exciton interactions between noble metal nanostructures and two-dimensional transition metal dichalcogenides have drawn great interest due to their significantly enhanced optical properties. Plasmon resonance of noble metal nanoparticles and plasmon-exciton interactions are strongly dependent on the particle morphology. Single-particle spectroscopic studies can overcome the ensemble average effects of sample inhomogeneity to unambiguously reveal the effects of the particle morphology. In this work, plasmon modulated emission of MoS2 in various plasmon-MoS2 hybrid structures has been studied on the single-particle level. Gold (Au) nanoantennas of different shapes including nanosphere, nanorod, nanocube, and nanotriangle with similar overall dimensions, which have different sharp tips and contact areas with MoS2, have been chosen to explore the particle shape effects. Different extent of enhancement in photoluminescence (PL) of MoS2 was observed for Au nanoantennas of different shapes. It was found that Au nanotriangles gave the highest enhancement factor, while Au nanospheres gave the lowest enhancement factor. The numerical simulation results show that the dominant contribution arises from an increased quantum yield, while enhanced excitation efficiency just plays a minor role. The quantum yield enhancement is affected by both the sharp tips and contact mode of the Au nanoantenna with MoS2. Polarization of the MoS2 emission was also found to be modulated by the plasmon mode of the Au nanoantenna. These single-particle spectroscopic studies allow us to unambiguously reveal the effects of the particle morphology on plasmon enhanced PL in these nanohybrids to provide a better understanding of the plasmon-exciton interactions.

18.
ACS Appl Mater Interfaces ; 13(50): 60163-60172, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34874696

RESUMO

A change in the degree of interpenetration (DOI) in metal-organic frameworks (MOFs) prompted by heat, pressure, or exchange of solvents is a fascinating phenomenon that can potentially impact the functional properties of MOFs. Structural transformation involving two noncentrosymmetric MOFs with different DOIs provides a rare opportunity to manipulate their optical properties. Herein, we report an unusual single-crystal-to-single-crystal (SCSC) transformation of a noncentrosymmetric 7-fold interpenetrated diamondoid (dia) Cd(II) MOF into another noncentrosymmetric but 8-fold interpenetrated dia MOF upon the removal of guest solvents. A hydrogen-bond network formed between the lattice solvents and linker trans-2-(4-pyridyl)-4-vinylbenzoate (pvb) in a 7-fold interpenetrated noncentrosymmetric MOF results in a significant increase in the two-photon absorption cross-section (11 times) as compared to that in the desolvated 8-fold interpenetrated MOF. Also, an increase in the DOI in the noncentrosymmetric crystals strengthened the π···π interaction between the individual diamondoid networks and enhanced the second-order nonlinear optical (NLO) coefficient (deff) by 4.5 times. These results provide a way to manipulate the optical properties of MOFs using a combined strategy of the formation of hydrogen bonds and interpenetration for access to tunable single-crystal NLO devices in an SCSC manner. By changing the experimental conditions, another dia Cd(II) MOF with 4-fold interpenetration can be isolated. In this centrosymmetric MOF, the olefin groups in the backbone of the ligand (pvb) undergo a [2 + 2] cycloaddition reaction quantitatively under UV light but in a non-SCSC fashion.

19.
ACS Nano ; 15(11): 18448-18457, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34714041

RESUMO

Liquid-phase exfoliation can be developed for the large-scale production of two-dimensional materials for photonic applications. Although atomically thin 2D transition metal dichalcogenides (TMDs) show enhanced nonlinear optical properties or photoluminescence quantum yield relative to the bulk phase, these properties are weak in the absolute sense due to the ultrashort optical path, and they are also sensitive to layer-dependent symmetry properties. Another practical issue is that the chemical stability of some TMDs (e.g., Weyl semimetals) decreases dramatically as the thickness scales down to monolayer, precluding application as optical components in air. To address these issues, a way of exfoliating TMDs that ensures instantaneous passivation needs to be developed. Here, we employed a polymer-assisted electrochemical exfoliation strategy to synthesize PVP-passivated TMDs monolayers that could be spin coated and restacked into organic-inorganic superlattices with well-defined X-ray diffraction patterns. The segregation of restacked TMDs (e.g., MoS2) by PVP allows the inversion asymmetry of individual layers to be maintained in these superlattices, which allows second harmonic generation and photoluminescence to be linearly scaled with thickness. PVP-passivated monolayer 1T'-MoTe2 saturable absorber fabricated from these flakes exhibits fast response and recovery time (<150 fs) and pulse stability. Continuous-wave mode-locking based on 1T'-MoTe2 saturable absorber in a fiber ring laser cavity has been realized, attaining a fundamental repetition rate of 3.15 MHz and pulse duration as short as 867 fs at 1563 nm.

20.
ACS Appl Mater Interfaces ; 13(8): 10037-10046, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605139

RESUMO

Lead halide perovskites have shown great potential in photovoltaic and photocatalytic fields. However, the toxicity of lead impedes their wide application. Herein composites of lead-free halide perovskite Cs2AgBiBr6 supported on nitrogen-doped carbon (N-C) materials were synthesized successfully through a facile one-pot method for the first time. Without deposition of noble metals as the cocatalyst, the optimal composite Cs2AgBiBr6/N-C (Cs2AgBiBr6/N-C-140) exhibits outstanding photocatalytic performance with a high hydrogen evolution rate of 380 µmol g-1 h-1 under visible light irradiation (λ ≥ 420 nm), which is about 19 times faster than that of pure Cs2AgBiBr6 and 4 times faster than that of physically mixed Cs2AgBiBr6/N-C-140, respectively. The Cs2AgBiBr6/N-C-140 composite also displays high stability with no significant decrease after six cycles of repeated hydrogen evolution experiments. The addition of N-C with a high surface area helps to prevent aggregation of Cs2AgBiBr6 NPs and provides more pathways for the migration of photoinduced carriers. The nitrogen dopant can facilitate photoinduced electron transfer from Cs2AgBiBr6 to N-C to result in spatially separated electrons and holes with prolonged electron time and greatly enhance the photocatalytic performance. This study indicates that Cs2AgBiBr6-based perovskite materials are promising candidates for photocatalytic hydrogen evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...